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Motivation

CPRC estimates frequency of use of payment instruments.

Average # of cash payments per week among U.S. adults.

Also credit, debit, check, . . .

Reliable and comprehensive records for individuals . . .

may not exist (cash).

may pose significant respondent burden (privacy and credit card
statements).

are relatively expensive to obtain.

Instead, we rely on consumer surveys.

Ask respondent for # of payments made.

Involve inherent cognitive biases.
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Survey Design

Virtually every aspect of the survey will affect responses [3, 8, 13, 15].

Survey mode: web, telephone, in-person [5, 7, 14].

Type of recall: [1, 4]

Specific: How many payments made in last week?
Typical: How many payments made in typical week?

Recall period: day, week, month, year? [6, 9, 10, 12].

In this work, we focus on recall period.

Q1 Which recall period gives optimal results in estimating population
means for cash, credit, debit, and check use?

Q2 Can we improve estimates by assigning different recall periods to
different respondents?
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Consider a hypothetical researcher . . .

Interested in population parameter ω. Ex: weekly average.

Selects N individuals and asks for # payments made in last ` days.

If no recall error, collects A` = {A1`, . . . ,AN`}, where
Ai` is actual # of payments by respondent i .

ω̂(A`) is estimate of ω. Ex:

Weekly data (` = 7) Yearly data (` = 365)

ω̂(A7) = N−1
N∑
i=1

Ai7 ω̂(A365) = N−1
N∑
i=1

7Ai,365

365

Wants sampling design so that estimator is unbiased:

E [ω̂ (A`)] = ω.
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What if recall data is used in unbiased estimator instead of actual data?

R` = {R1`, . . . ,RN`} represents reported data.

Evaluate ω̂(R`) through mean-squared error:

MSE(ω̂) = E [ω̂ − ω]2

= Var(ω̂) + Bias2(ω̂).

Generally, limN→∞MSE(ω̂) = Bias2(ω̂).

Focus is on population estimate, not individual recall.

Perfect recall 6=⇒ perfect estimates. Ex: Perfect recall for year, but
interested in Thanksgiving week.

Imperfect recall 6=⇒ poor estimates. Ex: Regression to mean.

Ai` ∼ F (mean = µi`) and Ri` = pAi` + (1− p)µi` =⇒ E[Ri`] = µi`.
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Q1: Which recall period gives optimal results in estimating population
means for cash, credit, debit, and check use?

We rely on two datasets:

2012 Diary of Consumer Payment Choice (DCPC)
2,547 individuals from RAND’s American Life Panel (ALP).

Track payment activity for three consecutive days in October 2012.

Provides direct insight into ω.

Patterns in data help define reasonable estimator forms.

2011-2012 Payment Recall Survey (PRS)
3,369 individuals from RAND’s American Life Panel (ALP).

About 1,850 individuals participated in both surveys.

Fielded in five phases between May 2011 and September 2012.

Recall the # of payments made for day, week, month, and year for all
four major payment instruments.

Provides insight into quality of recall for different recall periods.
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DCPC Data

Day $ Value PI Used Other Information
10/1 13.39 cash 10:15AM, grocery store, . . .
10/1 45.00 credit 4:00PM, restaurant,. . .

...
...

...
...

10/3 200.00 credit 12:30PM, automobile, . . .

Table: Data for one individual.

3-day periods randomly
distributed in month.

Provides the daily number of
payments made with each
payment instrument.

# Diarists Participating (light) vs. # Diarists Starting (dark)

10/1 10/15 11/1

50

100

200

250
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What does DCPC data look like?
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Figure: Means and 95 percent confidence intervals for mean daily use.
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We fit a mixed-effects log-linear model for each instrument:

# payments on day t ∼ Poisson(µit).

log(µit) = µi + f (t)

µi : random effect corresponding to individual.

f (t): fixed effects corresponding to day-of-week or day-of-month.

Comparison of models finds

Strong day-of-week
effects for all four
instruments.

Evidence of monthly
cycle for checks.
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Back to our hypothetical researcher . . .

ω = mean # payments per week in October 2012.

SRS among target population (defined by ALP).

Seemingly reasonable linear estimators:

ω̂` =
N∑
i=1

wi`Ri`

` = 1: wi1 = (Nd)−1, Nd = # reporting for day-of-week d .

` > 7: wi` = 7
N` .

Possible limitations:

Monthly (` = 30) and yearly (` = 365) recall is not quite right;
intervals of 30 and 365 days do not have equal representation of each
day of week.

Yearly recall (` = 365) extends to periods outside of October 2012.
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PRS Data
Respondents participate in 1-3 phases (3-9 months between surveys).

In each phase of survey:
Sequence of payment instruments is randomized.

Order of day, week, and month is randomized; year is always last.

Day is randomly assigned within past week.

Data for one individual (in each phase of survey)

Day in Past Past Past
Last Week Week Month Year

Cash 2 8 30 350
Credit 1 7 25 200
Debit 0 2 10 90
Check 0 0 0 0

Table: Reported # of payments.
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Example of timing of PRS and DCPC:

7/15/2010 7/15/2011 7/15/2012

Phase 2

Phase 4

Phase 5

Day of Recall Survey
2012 Diary Period

Figure: Timing for individual who took DCPC on October 15th, 2012.
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We want to estimate bias of estimator based on recall period length `:

Bias(ω̂`) = E[ω̂`]− ω.

Linear estimator depends on E[Ri`] and ω.

Use DCPC data to estimate ω.

Use PRS data to estimate E[Ri`].

Use only PRS data from after August 15th 2012.

Adjust for any lag effect with daily recall (not found to be significant).

Randomization in PRS helps with various survey-specific effects.
Ex: Dependence of response errors (weekly value should limit possible
daily values).

Bootstrap respondents to determine distribution of bias estimate:

Sample within respondents who took both surveys.
Sample within respondents who only took DCPC.
Sample within respondents who only took PRS.
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For each bootstrapped sample, estimate

Bias for each `.
Which recall period minimizes absolute bias.
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Figure: Bootstrapped bias (lines) and probability of minimizing absolute bias (bars).
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Conclusions

Optimal recall periods differ across payment instruments:

Week for cash
Month for credit,debit.
Year for check.

Hurd and Rohwedder [9] suggest that optimal recall periods relate to
the frequency of behavior.

Survey of Consumer Payment Choice (SCPC):

Taken by those who took DCPC; also in October 2012.

Respondents choose recall period (week, month, year) to report typical
# of payments.

Correspondence between DCPC data and reported SCPC results
matches these results.
Ex: Respondents who report cash on weekly basis show most
consistency between SCPC (recall) data and DCPC (diary) data.
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Q2: Can we improve estimates by assigning different recall periods to
different respondents?

Recall for individual i is based on recall period `i .

ωi = weekly mean for individual i .

If E[ωi ] = ω with respect to sampling scheme,

E[ω̂ − ω] ≤
N∑
i=1

E |wi`iRi`i − ωi | .

Minimizing discrepancy between recall-based estimate of ωi and true
ωi likely improves population estimate.

Can optimal recall periods be predicted for individuals based on
demographic information known ahead of survey?
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For any individual i

Ris` = # payments in last ` days reported on day s (i.e. phase s).

Bis = recall period that produces closest approximation to ωi :

Bis = argmin` |wis`Ris` − ωi | .

If we know ωi , we can determine Bis from PRS data. Ex: If ωi = 5:

Recall Period Response Scaled Estimate of ω Difference

Week 7 7× 7
7 = 7 2

Month 20 20× 7
30 = 4.67 −0.33

Year 200 200× 7
365 = 3.83 −1.17

Sampling ωi allows us to sample Bis ; want to sample from

P(ωi | DCPC,PRS) ∝ P(ωi | DCPC)P(PRS | ωi )

Marcin Hitczenko (CPRC) 17
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A simple model:

Distribution of ωi | DCPC provided from random-effect models;
related to µi .

Distribution of Ris` | ωi takes form:

Ris` | ωi , λis` ∼ Poisson

(
λis` ×

`

7
ωi

)
λis` represents degree of reporting bias:

λis` = 1 =⇒ unbiased recall
λis` > 1 =⇒ overestimation
λis` < 1 =⇒ underestimation

Special case of model based on idea that recall is done via
enumeration or rate-based estimation [2, 3].

ωi = 0 =⇒ P(Ris` = 0) = 1.
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We run a MCMC procedure:

Restrict data to individuals who took DCPC and participated in PRS
after July 2012.

Use cash only:

only instrument with very high adoption rates.
issue of non-adoption (ωi = 0) presents modeling computations.

Compare weekly, monthly, and yearly recall:

currently adding daily recall.

Assume λis` ∼ Gamma(k`, τ`), independent across i , s and `:

currently loosening independence assumptions (especially across s).

Use non-informative hyper-priors: P(k`, τ`) ∝ 1.

Generate draws of ωi | DCPC,PRS.
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Example 1: Prior vs. posterior estimates of ωi .

0 2 4 6 8 10 12 14
Individual Weekly Mean

D
e

n
si

ty

Based on PRS: {2, 0.7, 0.7}, {1, 0.7, 0.2}
Scaled DCPC average (x 7/3): 9.3

Figure: Prior (dashed) and posterior(solid) distributions of ωi . PRS estimates are

ordered according to {W,M,Y} recall.
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Example 2: Prior vs. posterior estimates of ωi .

0 5 10 15 20 25
Individual Weekly Mean

D
e

n
si

ty

Based on PRS: {15, 2.8, 1.1}
Scaled DCPC average (x 7/3): 9.3

Figure: Prior (dashed) and posterior(solid) distributions of ωi . PRS estimates are

ordered according to {W,M,Y} recall.
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Example 3: Prior vs. posterior estimates of ωi .

0 5 10 15 20 25 30 35
Individual Weekly Mean

D
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Based on PRS: {0, 0.7, 0.2}, {13, 9.3, 5.8}
Scaled DCPC average (x 7/3): 14

Figure: Prior (dashed) and posterior(solid) distributions of ωi . PRS estimates are

ordered according to {W,M,Y} recall.
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In each posterior draw from MCMC algorithm:

Given ωi , determine Bis :

Individual (i) 1 1 1 2 . . .

Phase (s) 2 4 5 3 . . .
ωi 5.4 5.4 5.4 1.2 . . .
Bis week month week month . . .

For the generated set {Bis} fit models:

P(Bis = `) ∝ exp(α`)

P(Bis = `) ∝ exp(demoTi β`).

Second model suggests that optimal recall period for individual relates
to demographic information (demoi ).

Demographic information includes age, gender, education, and
income.
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For each draw calculate deviance between models.
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Figure: Fitted probabilities, P̂(Bis = 7) for three draws from MCMC.

Averaging over draws, find little evidence that demographics predict
the optimal recall period (p-value= 0.16).

For all demographic combinations, the weekly recall period is always
most likely to be best.
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Conclusions

Important to think carefully about what parameters we are trying to
estimate, and whether sampling design is suited to optimize results.

Evidence that optimal recall periods depend on what is being
measured; linked to frequency of behavior?

Not (yet?) enough evidence of heterogeneity in optimal recall lengths
to justify assigning different recall periods to different respondents.

Limiting Factors/Future Work

Diary data is not necessarily the truth [11].

Get more accurate records (if possible).

Modeling assumptions may not be correct.

Expand analysis and flexibility of models.

Results may not hold for broader populations; the ALP is not
representative of US.
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Models for f (t)

Let dow(t) =


1 t is a Sunday
...

...
7 t is a Saturday

index the day of the week and

pom(t) =

∑
t′ 1 [t ′ ≤ t, and t ′, t in same month]∑

t′ 1 [t ′, t in same month]

define location within a month. Ex: pom
(
October 15th

)
= 15

31 .

We consider three models for f (t):

A f (t) =
∑7

j=1 βj1 [dow(t) = j ] + α1pom(t) + α2pom
2(t)

B f (t) =
∑7

j=1 βj1 [dow(t) = j ]

C f (t) = ν.
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P(ωi | DCPC)
The first term in posterior, P(ωi | DCPC):

Represents posterior estimate of ω given DCPC data.

Defined via estimates of f (t) and predictions of µi in model fits:

ωi | DCPC =
7∑

j=1

exp(µi + βj)

= exp(µi )
7∑

j=1

exp(βj)

with µi | DCPC ∼ Normal(m̂i , v̂i ).

Can be approximated with ωi | DCPC ∼ Gamma(ki , τi ) with
parameters (ki , τi ) determined by matching first two moments of
distribution implied by (m̂i , v̂i ).
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Model for Recall Data

The model

Ris` | ωi , λis` ∼ Poisson

(
λis` ×

`

7
ωi

)
,

is a special case of more general class of models:

Ris` | ωi , λis` =

{
λis`Ais` w.p. p(`)

Poisson( `
7 × γiωi ) w.p. 1− p(`)

p(`) defines probability of using enumeration (presumably decreases
as ` increases).

λis` defines the bias in the enumeration estimation.

γi defines the bias in the rate-based estimation.
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